A Syntax-based Statistical Translation Model

نویسندگان

  • Kenji Yamada
  • Kevin Knight
چکیده

We present a syntax-based statistical translation model. Our model transforms a source-language parse tree into a target-language string by applying stochastic operations at each node. These operations capture linguistic differences such as word order and case marking. Model parameters are estimated in polynomial time using an EM algorithm. The model produces word alignments that are better than those produced by IBM Model 5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

Statistical Translation Model Based On Source Syntax Structure

Syntax-based statistical translation model is proved to be better than phrasebased model, especially for language pairs with very different syntax structures, such as Chinese and English. In this talk I will introduce a serial of statistical translation models based on source syntax structure. The tree-based model uses the one best syntax tree for translation. The forest-based model uses a comp...

متن کامل

A Dependency Edge-based Transfer Model for Statistical Machine Translation

Previous models in syntax-based statistical machine translation usually resort to some kinds of synchronous procedures, few of these works are based on the analysis-transfer-generation methodology. In this paper, we present a statistical implementation of the analysis-transfergeneration methodology in rule-based translation. The procedures of syntax analysis, syntax transfer and language genera...

متن کامل

Maximum Entropy based Rule Selection Model for Syntax-based Statistical Machine Translation

This paper proposes a novel maximum entropy based rule selection (MERS) model for syntax-based statistical machine translation (SMT). The MERS model combines local contextual information around rules and information of sub-trees covered by variables in rules. Therefore, our model allows the decoder to perform context-dependent rule selection during decoding. We incorporate the MERS model into a...

متن کامل

Constituent Reordering and Syntax Models for English-to-Japanese Statistical Machine Translation

We present a constituent parsing-based reordering technique that improves the performance of the state-of-the-art English-to-Japanese phrase translation system that includes distortion models by 4.76 BLEU points. The phrase translation model with reordering applied at the pre-processing stage outperforms a syntax-based translation system that incorporates a phrase translation model, a hierarchi...

متن کامل

Syntax-based Language Models for Statistical Machine Translation

We present a syntax-based language model for use in noisy-channel machine translation. In particular, a language model based upon that described in (Cha01) is combined with the syntax based translation-model described in (YK01). The resulting system was used to translate 347 sentences from Chinese to English and compared with the results of an IBM-model-4-based system, as well as that of (YK02)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001